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Fig. 1. A simulated character gets up, walks, hops, jumps, and runs in our system. We demonstrate a model-based framework for learning a generative motion
control policy based on variational autoencoders (VAE), which allows a simulated character to learn a diverse set of skills and use them to accomplish various
downstream tasks.

In this paper, we introduce ControlVAE, a novel model-based framework
for learning generative motion control policies based on variational au-
toencoders (VAE). Our framework can learn a rich and flexible latent repre-
sentation of skills and a skill-conditioned generative control policy from a
diverse set of unorganized motion sequences, which enables the generation
of realistic human behaviors by sampling in the latent space and allows
high-level control policies to reuse the learned skills to accomplish a variety
of downstream tasks. In the training of ControlVAE, we employ a learnable
world model to realize direct supervision of the latent space and the control
policy. This world model effectively captures the unknown dynamics of the
simulation system, enabling efficient model-based learning of high-level
downstream tasks. We also learn a state-conditional prior distribution in the
VAE-based generative control policy, which generates a skill embedding that
outperforms the non-conditional priors in downstream tasks. We demon-
strate the effectiveness of ControlVAE using a diverse set of tasks, which
allows realistic and interactive control of the simulated characters.
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1 INTRODUCTION
Learning physics-based controllers to realize complex human be-
haviors has been a longstanding challenge for character animation.
Recent research has partially addressed this problem by imitat-
ing motion capture data of real human performance using deep
reinforcement learning. However, there is a common practice in
these approaches where control policies for different tasks are often
trained from scratch. Although an extensive range of motions, from
basic locomotion to dynamic stunts, have been successfully learned
by various agents, how to effectively reuse these learned motion
skills to accomplish new tasks remains a challenging problem.

Recent research in kinematic motion synthesis has demonstrated
successful applications of generative models, such as variational
autoencoders (VAE) [Ling et al. 2020] and normalizing flows [Henter
et al. 2020], in learning a rich and versatile latent space to encode
a large variety of skills that multiple downstream tasks can reuse.
However, these approaches are not directly applicable to learning
generative physics-based controllers because their learning objec-
tives are usually defined in the motion domain. The gradients of
these objectives typically cannot be back-propagated over the bar-
rier of the simulation, which is often considered as a black box and
not differentiable. Even with a differentiable dynamics engine, the
highly non-linear nature of the articulated rigid-body system and
the contact dynamics often cause the training to stop at poor local
optima [Hamalainen et al. 2020; Werling et al. 2021]. A possible
way to sidestep this issue is to convert the learning objective of
the generative model into a special reward term of reinforcement
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learning [Ho and Ermon 2016; Peng et al. 2022, 2021]. However, this
approach will require training two coupled indirectly supervised
systems, where the training process and the training objective often
need to be carefully designed to achieve stable results.
Model-based approaches, or, more specifically, those learning

world models [Ha and Schmidhuber 2018], incorporate approximate
models to predict the future states of the system given its previous
states and the actions taken. The differentiable world model bridges
the gap between the simulation and control policy, allowing the
objectives defined in the motion domain to supervise the policy
directly, thus achieving efficient and stable training [Deisenroth
and Rasmussen 2011; Janner et al. 2021]. Recently, model-based
reinforcement learning has shown promising results in learning
to track complex human motions [Fussell et al. 2021]. The success
of these studies suggests a possibility that a more flexible control
model, such as a generative model like VAE, can be learned with
the help of a learnable world model.
In this paper, we introduce ControlVAE, a novel model-based

framework for learning generative motion control policies based
on variational autoencoders (VAE). Our framework can learn a rich
and flexible latent representation of skills and a skill-conditioned
generative control policy from a diverse set of unorganized motion
sequences, which enables the generation of realistic human behav-
iors by sampling in the latent space and allows high-level control
policies to reuse the learned skills to accomplish a variety of tasks.
VAEs are commonly trained against the standard normal distri-

bution [Kingma and Welling 2014; Ling et al. 2020]. However, our
preliminary experiments show that such a non-conditional prior is
not efficient in disentangling the representations of different skills.
We thus model our VAE-based generative policy with a prior dis-
tribution conditional on the simulated character state. The latent
skill embeddings generated from this conditional prior distribution
achieve higher performance in downstream tasks than those learned
using the non-conditional priors.

We employ a learnable world model to approximate the unknown
dynamics of the simulation system, which is trained using online
samples. We find this world model not only provides direct su-
pervision for learning the latent space and the control policy, but
further allows efficient model-based optimization of control policies
of downstream tasks with model-based learning.

To evaluate our method, we train ControlVAE on a diverse set of
locomotion skills and test its performance on several challenging
downstream tasks. We further conduct studies to validate our design
decisions both qualitatively and quantitatively.

2 RELATED WORK

2.1 Physics-based Motion Controllers
Research on developing physics-based control strategies to realize
realistic and interactive motions has a long history in computer ani-
mation. The seminal works can be dated back to the 1990s, when lo-
comotion control was realized based on careful motion analysis and
hand-crafted controllers [Hodgins et al. 1995]. Robust locomotion
controllers are later developed using abstract models [Coros et al.
2010; Lee et al. 2010; Yin et al. 2007], optimal control [Muico et al.
2011], model predictive control [Hämäläinen et al. 2015; Mordatch

et al. 2010], policy optimization [Tan et al. 2014], and reinforce-
ment learning [Xie et al. 2020; Yin et al. 2021; Yu et al. 2018]. These
approaches typically require sufficient prior knowledge and hand-
tuned parameters or reward functions, hence can be hard to apply
to complex motions and scenarios. Such difficulties motivate the
so-called data-driven methods that generate natural motion by imi-
tating human performance. A fundamental task of these approaches
is to track a reference motion by learning feedback policies [Lee et al.
2010; Liu et al. 2016, 2012]. The development of deep reinforcement
learning techniques further enables robust tracking of agile human
motions [Peng et al. 2018] and to generalize to various body shapes
[Won and Lee 2019] and environments [Xie et al. 2020].
Based on the success of individual controllers, recent research

starts to focus on creating multi-skilled characters. Training a ro-
bust tracking policy to track the results of a pre-trained kinematic
controller allows the combined control strategy to imitate different
target motions according to the task or user input [Bergamin et al.
2019; Park et al. 2019; Won et al. 2020]. However, the performance of
such a combined strategy is limited to the capability of the kinematic
controller, and it can be computationally expensive to evaluate both
the networks of the tracking policy and kinematic controller at
runtime. Individual physics-based control policies can be organized
into a graph-like structure [Liu et al. 2016; Peng et al. 2018], which
can be further broken down into short snippets and managed by a
high-level scheduler [Liu and Hodgins 2017]. However, the system
needs to maintain all the sub-controllers at runtime for downstream
tasks. More recent studies [Luo et al. 2020; Merel et al. 2018, 2020;
Peng et al. 2022, 2021; Won et al. 2022] develop various generative
models to incorporate a diverse set of motions. The results are com-
pact latent representations of skills that allow high-level policies
to reuse multiple skills to accomplish downstream tasks. However,
learning efficient representations of skills is a nontrivial problem.
We develop several novel components in this work to ensure the
performance of the learned skill embeddings in the downstream
tasks, which are verified in a series of experiments.

2.2 Generative Models in Motion Control
Generative models have been extensively studied in kinematic mo-
tion synthesis. Early research learns statistical representation of
motion based on the Gaussian Mixture Model [Min and Chai 2012]
and Gaussian Process [Levine et al. 2012; Wang et al. 2008]. In the
era of deep learning, the VAEs [Kingma andWelling 2014] have been
realized using the mixture-of-expert network [Ling et al. 2020] and
transformers [Petrovich et al. 2021] to encode motions into latent
spaces. The MoGlow framework proposed by Henter et al. [2020]
draws support from the normalizing flows [Kingma and Dhariwal
2018] for probabilistic motion generation. Li et al. [2022] train a
GAN-based model to synthesize convincing long motion sequences
from a short example. A generative model usually learns a compact
latent space that encodes a variety of motions. Sampling in the
latent space leads to natural kinematic motions, which allows a task-
oriented high-level controller to reuse the motions in downstream
tasks using either optimization [Holden et al. 2016; Min and Chai
2012] or learned policies [Levine et al. 2012; Ling et al. 2020].
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Physics-based controllers can also be formulated as generative
models, where the samples in the latent space will be decoded into
specific actions for the simulated character. Merel et al. [2018] learn
an autoencoder that distills a large group of expert policies into
a latent space, with which a high-level controller can be learned
to accomplish difficult tasks like catching and carrying an object
[Merel et al. 2020]. Similarly, Won et al. [2022] employ a conditional
VAE and perform behavior cloning on expert trajectories. Luo et al.
[2020] treat the composing weights of the motor primitives learned
by the multiplicative compositional policies (MCP) [Peng et al. 2019]
as the representation of skills and achieves interactive locomotion
control of a simulated quadruped. Inspired by the generative ad-
versarial imitation learning (GAIL) [Ho and Ermon 2016], Peng et
al. [2021] include the adversarial motion prior into the reward func-
tion of reinforcement learning, encouraging the simulated character
to finish a task using natural-looking actions. They later extend
this framework to learn adversarial skill embeddings for a large
range of motions [Peng et al. 2022]. Our ControlVAE is based on
the conditional VAE. Unlike previous works using a standard nor-
mal distribution as the prior distribution of VAE [Ling et al. 2020;
Won et al. 2022], we employ a state-conditional prior that creates
better latent embeddings. We also employ a model-based learning
algorithm to learn our ControlVAE model.

2.3 Model-based Learning
Model-based learning approaches realize control using the underly-
ing model of a dynamic system. The models can be either accurate
or approximated using learnable functions. Accurate models often
come with differentiable simulators [Mora et al. 2021; Todorov et al.
2012; Werling et al. 2021]. They can be used in either offline or on-
line optimization to construct motion controllers [Eom et al. 2019;
Hong et al. 2019; Macchietto et al. 2009; Mora et al. 2021; Mordatch
et al. 2010, 2012; Muico et al. 2011]. Approximate models, or the
World Models [Ha and Schmidhuber 2018], are typically formulated
as Gaussian Process [Deisenroth and Rasmussen 2011] or neural
networks [Janner et al. 2021; Nagabandi et al. 2018]. They provide
differentiable transition functions that allow gradients of learning
objectives to pass through the barrier of the simulation [Chiappa
et al. 2017; Heess et al. 2015; Schmidhuber 1990], thus enabling
policy optimization to be solved efficiently using gradient-based
techniques [Deisenroth and Rasmussen 2011; Heess et al. 2015; Jan-
ner et al. 2021; Nagabandi et al. 2018].
The application of the reinforcement learning algorithms with

learnable world models is rather sparse in physics-based character
animation. While early studies in this category had been done in
the 1990s [Grzeszczuk et al. 1998], SuperTrack [Fussell et al. 2021]
is among the first frameworks that achieve successful tracking of a
large diversity of skills. Our work is inspired by SuperTrack [Fussell
et al. 2021]. We also learn a world model along with the control pol-
icy to achieve efficient training. However, unlike SuperTrack [Fussell
et al. 2021], which learns individual tracking controllers, our system
learns a VAE-based generative control policy and reusable skill em-
beddings, which enable multiple downstream tasks without training
from scratch each time.

A concurrent study done by Won et al. [2022] shares a similar
goal to our work. They also develop a VAE-based control policy and
learn a world model to facilitate training. Our method differs from
their approach in three ways: (a) Won et al. [2022] employ behavior
cloning to train the control policy, which requires the demonstration
of many pre-trained expert policies. Instead, our framework allows
direct learning of the generative control policies from raw motion
clips; (b) our method trains the world model along with the control
policy, ensuring they are compatible. We believe this is critical for
successful model-based learning of the downstream tasks. The same
results are not demonstrated by Won et al. [2022]. The world model
is learned offline in their system; (c) we employ a state-conditional
prior distribution in our VAE-based model, which outperforms the
non-conditional prior in accomplishing downstream tasks. In con-
trast, Won et al. [2022] use the standard state-independent prior.

3 CONTROL VAE
Figure 2 illustrates the overall structure of ControlVAE. In Con-
trolVAE, a motion control policy is formulated as a conditional
distribution 𝜋 (𝒂 |𝒔, 𝒛). It computes an action 𝒂 to control the simu-
lated character according to its current state 𝒔 and a latent variable
𝒛 ∈ Z sampled from a prior distribution 𝒛 ∼ 𝑝 (𝒛). We train this
control policy to allow each latent variable 𝒛 to encode a specific
skill, which enables a high-level policy to operate in the latent space
Z to accomplish downstream tasks.
More specifically, at each time step 𝑡 , the character observes

its state 𝒔𝑡 and computes an action 𝒂𝑡 ∼ 𝜋 (𝒂𝑡 |𝒔𝑡 , 𝒛𝑡 ), where the
latent variable 𝒛𝑡 is provided by a high-level policy. The charac-
ter then executes 𝒂𝑡 in the simulation and moves to a new state
𝒔𝑡+1 with the probability of transition given by 𝑝 (𝒔𝑡+1 |𝒔𝑡 , 𝒂𝑡 ). This
process is then repeated, resulting in a simulated trajectory 𝜏∗ =
{𝒔0, 𝒂0, 𝒔1, 𝒂1, . . . , 𝒔𝑇−1, 𝒂𝑇−1, 𝒔𝑇 } in which the character keeps mov-
ing and performs the skills defined by the sequence of latent codes
{𝒛0:𝑇−1}. Here we assume that {𝒛0:𝑇−1} are generated indepen-
dently of each other.

What we are interested in is the character’s motion in this simu-
lated trajectory, represented compactly as 𝜏 = {𝒔0:𝑇 }. To produce
realistic skills, we need to train the control policy 𝜋 (𝒂𝑡 |𝒔𝑡 , 𝒛𝑡 ) so
that the distribution of the generated motions 𝑝 (𝜏) matches the dis-
tribution of a motion dataset D = {𝜏𝑖 }. However, the computation
of 𝑝 (𝜏) relies on a very complex likelihood 𝑝 (𝒔0:𝑇 |𝒛0:𝑇−1),

𝑝 (𝜏) =
∫
𝒛0:𝑇 −1

𝑝 (𝒛0:𝑇−1)𝑝 (𝒔0:𝑇 |𝒛0:𝑇−1), (1)

which makes the computation intractable. The variational autoen-
coder (VAE) [Kingma and Welling 2014] thus considers its evidence
lower bound (ELBO). Considering that 𝒔𝑡+1 and 𝒂𝑡 depend only on
𝒔𝑡 and 𝒛𝑡 , also {𝒛𝑡 } are independent to each other, the ELBO of
Equation (1) can be written as

log 𝑝 (𝜏) − log𝑝 (𝒔0) ≥
𝑇−1∑︁
𝑡=0
E𝑞 (𝒛𝑡 |𝒔𝑡 ,𝒔𝑡+1 ) [log 𝑝 (𝒔𝑡+1 |𝒔𝑡 , 𝒛𝑡 )]

−
𝑇−1∑︁
𝑡=0
DKL (𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1)∥𝑝 (𝒛𝑡 )) , (2)
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Fig. 2. Overview of our ControlVAE System.

where 𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1) is the so-called variational distribution, which
approximates the true posterior distribution of the skill variable
𝑝 (𝒛𝑡 |𝜏) and is assumed to depend on only the state transition, de-
noted as (𝒔𝑡 , 𝒔𝑡+1), 𝑝 (𝒔𝑡+1 |𝒔𝑡 , 𝑧𝑡 ) represents the probability of this
state transition conditional on 𝒛𝑡 , and 𝑝 (𝒔0) is the distribution of
the start states.
The ELBO essentially defines an autoencoder, where the vari-

ational distribution 𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1) describes the encoding process
that a skill representation 𝒛𝑡 is extracted from a pair of consecutive
states (𝒔𝑡 , 𝒔𝑡+1), and 𝑝 (𝒔𝑡+1 |𝒔𝑡 , 𝑧𝑡 ) characterizes the decoding pro-
cess where 𝒔𝑡+1 is reconstructed from the skill embedding 𝒛𝑡 . The
KL-divergence in Equation (2) can be considered as a regularization
that encourages the approximate posterior to be close to the prior
𝑝 (𝒛), so that each sample drawn from 𝑝 (𝒛) can be decoded into a
realistic skill.

3.1 Generation
A common choice of the prior 𝑝 (𝒛) is the standard multivariate
normal distribution N(0, 𝑰 ) [Kingma and Welling 2014; Ling et al.
2020]. However, in our preliminary experiments with this state-
independent prior, the character often keeps changing skills quickly,
leading to jerky movements and occasional falls. Downstream con-
trol policies also perform less efficiently on this prior. For example,
the character can encounter difficulties in maintaining a constant
moving direction in a direction control task. We presume that this
state-independent prior distribution may not provide enough in-
formation for the regularization. The encoder thus computes an
inconsistent skill distribution, where the same skill is encoded into
different parts of the latent space at different states.

To deal with this problem, we leverage a conditional distribution
𝑝 (𝒛𝑡 |𝒔𝑡 ) as the prior and formulate it as a Gaussian distribution with
diagonal covariance

𝑝 (𝒛𝑡 |𝒔𝑡 ) ∼ N
(
𝝁𝑝 (𝒔𝑡 ;𝜃𝑝 ), 𝜎2

𝑝 𝑰
)
, (3)

where the mean 𝝁𝑝 is a neural network parameterized with 𝜃𝑝 and
the standard deviation 𝜎 is a hyperparameter.

We then generate a motion trajectory according to a sequence of
skill codes {𝒛𝑡 } by simulating the character with the actions com-
puted by the policy 𝜋 (𝒂𝑡 |𝒔𝑡 , 𝒛𝑡 ). We model the policy as a Gaussian
distribution

𝜋 (𝒂𝑡 |𝒔𝑡 , 𝒛𝑡 ) ∼ N (𝝁𝜋 , Σ𝜋 ) (4)

with a diagonal covariance matrix 𝚺𝜋 and the mean 𝝁𝜋 as a neural
network 𝝁𝜋 (𝒔𝑡 , 𝒛𝑡 ;𝜃𝜋 ) parameterized by 𝜃𝜋 . The generation process
is then characterized by the log-likelihood in Equation (2)

log 𝑝 (𝒔𝑡+1 |𝒔𝑡 , 𝒛𝑡 ) = log
∫
𝒂𝑡

𝑝 (𝒔𝑡+1 |𝒔𝑡 , 𝒂𝑡 )𝜋 (𝒂𝑡 |𝒔𝑡 , 𝒛𝑡 )

≥ E𝜋 (𝒂𝑡 |𝒔𝑡 ,𝒛𝑡 ) [log𝑝 (𝒔𝑡+1 |𝒔𝑡 , 𝒂𝑡 )] . (5)

However, the true transition probability distribution 𝑝 (𝒔𝑡+1 |𝒔𝑡 , 𝒂𝑡 )
is not known since we consider the simulation process as a black
box. We opt to approximate it using a world model 𝜔 (𝒔𝑡+1 |𝒔𝑡 , 𝒂𝑡 ),
which is another Gaussian distribution

𝜔 (𝒔𝑡+1 |𝒔𝑡 , 𝒂𝑡 ) ∼ N (𝝁𝑤 , 𝚺𝑤) (6)

with a diagonal covariance matrix 𝚺𝑤 and the mean 𝝁𝑤 computed
as a neural network 𝝁𝑤 (𝒔𝑡 , 𝒂𝑡 ;𝜃𝑤) parameterized by 𝜃𝑤 .

3.2 Inference
During the training, we need to infer the approximate posterior
distribution of the skill variable 𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1) according to each pair
of states (𝒔𝑡 , 𝒔𝑡+1) in a state transition. Again, we let 𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1)
be a Gaussian distribution

𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1) ∼ N
(
𝝁𝑞, 𝜎

2
𝑞 𝑰

)
(7)

with a diagonal covariance. Considering that 𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1) needs to
stay close to the prior 𝑝 (𝒛𝑡 |𝒔𝑡 ), we let 𝜎𝑞 = 𝜎𝑝 . Rather than directly
learning the mean 𝝁𝑞 , we learn the residual between 𝝁𝑞 and the
mean of the prior, 𝝁𝑝 . Specifically, we compute

𝝁𝑞 = 𝝁𝑝 + 𝝁𝑞, (8)

where 𝝁𝑞 = 𝝁𝑞 (𝒔𝑡 , 𝒔𝑡+1;𝜃𝑞) is a residual network parameterized by
𝜃𝑞 . This structure is inspired by the SRNN [Fraccaro et al. 2016]. It
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makes the KL-divergence in Equation (2) independent of the prior
𝑝 (𝒛𝑡 |𝒔𝑡 ) and allows an efficient computation of

DKL (𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1)∥𝑝 (𝒛𝑡 |𝒔𝑡 )) =
𝝁𝑇𝑞 𝝁𝑞

2𝜎2
𝑝

. (9)

The training process can then be viewed as learning how to correct
the prior distribution using the information from the next state 𝒔𝑡+1.

3.3 Training
3.3.1 Control VAE. The training of ControlVAE is then formulated
as a maximum likelihood estimation (MLE) problem over the mo-
tion dataset D = {𝜏𝑖 }. We solve this problem by maximizing the
ELBO in Equation (2), where the control policy 𝜋 (𝒂𝑡 |𝒔𝑡 , 𝒛𝑡 ), the con-
ditional prior 𝑝 (𝒛𝑡 |𝒔𝑡 ), and the approximate posterior 𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1)
are trained together. The world model 𝜔 (𝒔𝑡+1 |𝒔𝑡 , 𝒂𝑡 ) is learned sep-
arately, as will be described later.
Instead of evaluating Equation (2) in a time step-wise manner,

we compute it over synthetic trajectories. Specifically, we pick a
random start state 𝒔0 and generate a synthetic trajectory that tracks
the corresponding reference clip 𝜏 starting from 𝒔0 in D. This is
achieved by recursively applying the control policy 𝜋 (𝒂𝑡 |𝒔𝑡 , 𝒛𝑡 ) in
the world model 𝜔 (𝒔𝑡+1 |𝒔𝑡 , 𝒂𝑡 ). In this process, the latent variables
𝒛𝑡 are sampled from the approximate posterior 𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1), where
the future states 𝒔𝑡+1 in the state transitions are extracted from 𝜏 .
The reparameterization trick [Kingma and Welling 2014] is used
when sampling 𝒛𝑡 to ensure the backpropagation of the gradients.

Using all the approximations described above, we can now convert
Equation (2) into loss functions. Considering Equation (5), we have

Lrec =
𝑇−1∑︁
𝑡=0

𝛾𝑡E𝑞 (𝒛𝑡 |𝒔𝑡 ,𝒔̃𝑡+1 ),𝜋 (𝒂𝑡 |𝒔𝑡 ,𝒛𝑡 ) [∥𝒔𝑡+1 − 𝝁𝑤 (𝒔𝑡 , 𝒂𝑡 )∥
2
𝑊 ] (10)

Lkl =
𝑇−1∑︁
𝑡=0

𝛾𝑡


𝝁𝑞 (𝒔𝑡 , 𝒔𝑡+1)

2

2/2𝜎
2
𝑝 , (11)

where the states labeled with a tilde ( ˜ ) are extracted from the
reference clip 𝜏 and those without it are from the synthetic trajectory.
Considering that the synthetic trajectory is constructed using the
approximate world model, the states in the trajectory can deviate
gradually from the true simulation. A discount factor 𝛾 is thus
employed to lower the weights of these inaccurate states along the
trajectory. Here we use 𝛾 = 0.95 in this paper.

In addition to the above ELBO losses, following SuperTrack [Fussell
et al. 2021], we regularize the magnitude of the actions in terms
of both the 𝐿1 and 𝐿2 metrics to prevent excessive control. The
corresponding loss term is defined as

Lact =
𝑇−1∑︁
𝑡=0

𝛾𝑡
(
𝑤𝑎1 ∥𝒂𝑡 ∥1 +𝑤𝑎2 ∥𝒂𝑡 ∥22

)
, (12)

which is discounted similarly to the ELBO losses. In practice, we
find 𝐿1 term can also be replaced with a larger𝑤𝑎2 weight.

The final objective for training the ControlVAE is then given by

L = Lrec + 𝛽L𝑘𝑙 + Lact . (13)

ALGORITHM 1: Training algorithm of ControlVAE

Function TrajectoryCollection( Env, ControlVAE) :
Select 𝜏 = {𝒔̃0, 𝒔̃1, . . . , 𝒔̃𝑇 } from D;
𝒔0 ← 𝒔̃0, 𝑡 ← 0;
while not terminated do

/* Get action from ControlVAE */

Sample 𝒛𝑡 ∼ 𝑞 (𝒛𝑡 |𝒔𝑡 , 𝒔̃𝑡+1 ) ;
// or 𝒛𝑡 ∼ 𝑝 (𝒛𝑡 |𝒔𝑡 ), see Section 3.4.4

Sample 𝒂𝑡 ∼ 𝜋 (𝒂𝑡 |𝒔𝑡 , 𝒛𝑡 ) ;
𝒔𝑡+1 ← simulation with state 𝒔𝑡 and action 𝒂𝑡 ;
𝑡 ← 𝑡 + 1;

end
Store 𝜏∗ = {𝒔0, 𝒂0, 𝒔1, 𝒂1, . . . , } and 𝜏 = {𝒔̃0, 𝒔̃1, . . . }in B′;

end
Function TrainWorldModel(𝜔 ,𝑇w ) :

Sample 𝜏∗ = {𝒔0, 𝒂̄0, 𝒔1, 𝒂̄1, . . . , } from B;
𝒔0 ← 𝒔0, Lw ← 0;
/* Generate synthetic trajectories */

for 𝑡 ← 0 to𝑇w − 1 do
𝒔𝑡+1 ← 𝜔 (𝒔𝑡 , 𝒂̄𝑡 ) ;
Lw ← Lw + ∥𝒔𝑡+1 − 𝒔𝑡+1 ∥𝑊 ′

end
Update 𝜔 with Lw

end
Function TrainControlVAE( 𝜔 , ControlVAE,𝑇VAE ) :

Sample 𝜏∗ and 𝜏 from B;
𝒔0 ← 𝒔0, L ← 0;
/* Generate synthetic trajectories */

for 𝑡 ← 0 to𝑇VAE − 1 do
Sample 𝒛𝑡 ∼ 𝑞 (𝒛𝑡 |𝒔𝑡 , 𝒔̃𝑡+1 ) ;
Sample 𝒂𝑡 ∼ 𝜋 (𝒂𝑡 |𝒔𝑡 , 𝒛𝑡 ) ;
𝒔𝑡+1 ← 𝜔 (𝒔𝑡 , 𝒂𝑡 ) ;
L ← L + Lrec (𝒔𝑡+1, 𝒔̃𝑡+1 ) + 𝛽L𝑘𝑙 + Lact

end
Update ControlVAE with L

end

Following 𝛽-VAE [Higgins et al. 2017], we employ a weight param-
eter 𝛽 for the KL-divergence loss, which increases once every 500
training epochs from 0.01 to 0.1 during the training.

3.3.2 WorldModel. The learning process of theworldmodel largely
repeats the same process in SuperTrack [Fussell et al. 2021]. Specif-
ically, 𝜔 (𝒔𝑡+1 |𝒔𝑡 , 𝒂𝑡 ) is learned based on a collection of simulated
trajectories, B = {𝜏∗

𝑗
}. We collect these trajectories by executing

the current control policy in the simulation with the start states and
skill latent variables extracted from random reference trajectories
in D. We then solve an MLE problem again to train 𝜔 (𝒔𝑡+1 |𝒔𝑡 , 𝒂𝑡 ).
Similar to the learning of the ControlVAE, we generate a synthetic
trajectory starting from a random state 𝒔0 in B by executing the
recorded sequence of actions {𝒂𝑡 } in the world model. The loss
function is then computed as

L𝑤 =

𝑇 ′−1∑︁
𝑡=0
∥𝒔𝑡+1 − 𝝁𝑤 (𝒔𝑡 , 𝒂𝑡 )∥2𝑊 ′ , (14)

where {𝒔𝑡+1} are the recorded states corresponding to {𝒂𝑡 }.
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3.3.3 Training Process. During training, we first collect a number
of simulated trajectories then update the world model and the Con-
trolVAE in tandem as illustrated in Algorithm 1.

Trajectory collection. At the beginning of each training epoch,
we select a start state 𝒔0 from a random trajectory 𝜏 in the motion
dataset D. Then the control policy 𝜋 (𝒂𝑡 |𝒔𝑡 , 𝒛𝑡 ) is evaluated to track
𝜏 , using the latent skill variable sampled from the posterior dis-
tribution 𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1), conditional on the current state 𝒔𝑡 of the
character and the corresponding next reference state 𝒔𝑡+1 in 𝜏 . The
character then performs the action 𝒂𝑡 in the simulation, resulting
in a new state 𝒔𝑡+1. This process is repeated until a termination
condition is satisfied. We then store the simulated trajectory 𝜏∗ and
corresponding reference trajectory 𝜏 in a temporary buffer B′, and
start a new trajectory from another random state. This trajectory
collection procedure is ended when the number of states in B′ ex-
ceeds a predefined size𝑁𝐵′ . Then the temporary bufferB′ is merged
into B, replacing the oldest trajectories and keeping the size of B
smaller than 𝑁𝐵 . Here we use 𝑁𝐵 = 5 × 104 and 𝑁𝐵′ = 2048.
We employ an early termination strategy to prevent B from

recording too many bad simulation samples. A simulation will be
terminated if the trajectory is longer than𝑇max = 512 time steps or if
the tracking error of the character’s head has exceeded 𝑑max = 0.5𝑚
for more than 𝑇term = 1 second.

Update worldmodel. We then update theworldmodel as described
in Section 3.3.2. More specifically, we extract a batch of 𝑁w random
clips {𝜏∗} of length 𝑇w from B, where each 𝜏∗ = {𝒔0:𝑇w , 𝒂0:𝑇w−1}.
Then 𝑁w synthetic trajectories are generated by unrolling the world
model using 𝒔0 and {𝒂0:𝑇w−1} to compute the loss in Equation (14).
The world model is then updated using the gradients of the loss
function. This updating process is repeated 8 times in each training
epoch with 𝑇w = 8 and 𝑁w = 512.

Update ControlVAE. At last, the ControlVAE is updated as de-
scribed in Section 3.3.1. Similar to the training of the world model,
we generate a batch of 𝑁VAE = 512 synthetic trajectories to evalu-
ate the loss functions in Equation (13), where each trajectory has
𝑇VAE = 24 frames. To ensure a good coverage over the state space,
the start states of these synthetic trajectories are randomly selected
from the simulation buffer B, and the corresponding motion clips in
D are extracted as the reference. We update the ControlVAE models
8 times before starting the next training epoch.

3.4 Implementation
3.4.1 Policy Representation.

State. Our physics-based character is modeled as articulated rigid
bodies with a floating root joint. Its state can be fully characterized
by 𝒔∗ = {𝒙𝑖 , 𝒒𝑖 , 𝒗𝑖 ,𝝎𝑖 }, 𝑖 ∈ 𝐵, where 𝐵 stands for the set of rigid
bodies and 𝒙𝑖 , 𝒒𝑖 , 𝒗𝑖 ,𝝎𝑖 are the position, orientation, linear velocity,
and angular velocity of each rigid body, respectively. Similar to
SuperTrack [Fussell et al. 2021], we convert the global state of the
character 𝒔∗ into the local coordinate frame of the root, and use
the result, 𝒔, as the input to the ControlVAE and the world model.
Specifically, we define 𝒔 = {𝒙𝑖 , 𝒒̄𝑖 , 𝒗𝑖 , 𝝎̄𝑖 , ℎ𝑖 ,𝒚0}, 𝑖 ∈ 𝐵, where

(𝒙𝑖 , 𝒒̄𝑖 , 𝒗𝑖 , 𝝎̄𝑖 ) = 𝒒−1
0 ⊗ (𝒙𝑖 − 𝒙0, 𝒒𝑖 , 𝒗𝑖 ,𝝎𝑖 ), (15)

ℎ𝑖 is the height of each rigid body, and 𝒚0 is the up axis of the
root’s local coordinate frame. The rotations 𝒒 are represented in
6D representation [Zhou et al. 2019], which are commonly used in
recent research on motion synthesis [Fussell et al. 2021; Lee et al.
2021]. They can be computed by extracting the first two columns of
a rotation matrix.
With this state representation, the reconstruction loss of Equa-

tion (10) is implemented in practice using the 1-norm distance be-
tween two states as

Lrec =
𝑇−1∑︁
𝑡=0

𝛾𝑡 [∥𝑊 (𝒔𝑡+1 − 𝒔𝑡+1)∥1] , (16)

where𝑊 = diag(𝑤𝑥 ,𝑤𝑞,𝑤𝑣,𝑤𝜔̄ ,𝑤ℎ,𝑤𝑦) is a diagonal weight ma-
trix that balances the magnitude of each component.

Action. We actuate our character using PD controllers. The action
𝒂 = {𝒒̂ 𝑗 }, 𝑗 ∈ 𝐽 is thus a collection of target rotations of all the
joints, where 𝐽 stands for the set of joints. We use 3D axis angles to
represent those target rotations.

Latent. We employ a latent spaceZ with dimension 64 to encode
the motion skills. The means of the conditional prior 𝑝 (𝒛𝑡 |𝒔𝑡 ) and
the approximate posterior 𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1) of the latent variable are
both modeled as neural networks with two 512-unit hidden layers
and the ELU as the activation function. To emphasize the state
information, we concatenate the input of each layer of the prior and
posterior networks with 𝒔𝑡 and 𝒔𝑡+1, respectively. We use 𝜎𝒑 = 0.3
as the standard deviation of these distributions.

Policy. The mean 𝝁𝜋 of the control policy 𝜋 (𝒂 |𝒔, 𝒛) is modeled as
a neural network. We employ a mixture-of-expert (MoE) structure
similar to the decoder network of MotionVAE [Ling et al. 2020].
Specifically, we use six expert networks in this structure, each having
three 512-unit hidden layers. The parameters of these experts are
blended according to the weights computed by a gating network,
which contains two 64-unit hidden layers. The ELU is used as the
activation function for these networks. To ensure the effectiveness
of the latent skill variable, 𝒛 is concatenated with the input of each
layer of the experts, and layer normalization is applied to normalize
these concatenated inputs. The covariance matrix Σ𝜋 of the policy
distribution is set as a diagonal matrix 𝜎2

𝜋 𝑰 , where 𝜎𝜋 = 0.05.

3.4.2 World Model. Our world model 𝜔 (𝒔𝑡+1 |𝒔𝑡 , 𝒂𝑡 ) ∼ N (𝝁𝑤 , 𝚺𝑤)
is formulated and trained in the same way as SuperTrack [Fussell
et al. 2021]. We use a neural network with four 512-unit hidden
layers and ELU activation functions for the world model 𝝁𝑤 (𝒔, 𝒂).
The input to 𝝁𝑤 (𝒔, 𝒂) is the state representation 𝒔 and the target
joint rotations of the action 𝒂 converted into quaternions. The world
model then predicts the change of the velocity and angular velocity
of each rigid body, represented by 𝑑𝒗𝑖 and 𝑑𝝎̄𝑖 , in the local coordi-
nate frame of the root. Then, the character’s new state 𝒔∗

𝑡+1 and thus
𝒔𝑡+1 are computed accordingly using the forward Euler method.
The objective function of Equation (14) is then implemented to

penalize the prediction error in the global coordinate frame:

L𝑤 =

𝑇 ′−1∑︁
𝑡=0



𝒔∗𝑡+1 − 𝒔∗𝑡+1

2
𝑊 ′ , (17)
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where the weight matrix𝑊 ′ = diag(𝑤𝑥 ,𝑤𝑞,𝑤𝑣,𝑤𝜔 ) is chosen em-
pirically to balance the magnitude of each component.
Our experiments show that large randomness can negatively

impact the stableness of the training process. In practice, we directly
use the mean function 𝝁𝑤 to generate the synthetic rollouts instead
of sampling from N(𝝁𝑤 , 𝚺𝑤).

3.4.3 Data Balancing. Our motion datasetD consists of several un-
structured long motion sequences of a diverse set of skills, including
walking, running, jumping, turning, and more difficult skills such as
getting up. During the trajectory collection process of the training,
if we select the initial states uniformly from D, easy motions may
often result in longer simulated trajectories and thus occupy the
simulation buffer B, making the ControlVAE hard to learn difficult
skills. To overcome this unbalancing problem, we calculate the value
of each state and sample the initial states according to their values.
The state with a lower value will have higher chance to be selected.

More specifically, we maintain a list V = {𝑉𝑡 } of the values of
every state in the dataset D, where all the 𝑉𝑡 are initialized to zero.
After every 200 epochs in the training, if a state with index 𝑡 in D
is encountered in the collected simulated trajectories, we update
the corresponding value 𝑉𝑡 as

𝑉 ∗𝑡 =

𝑇−𝑡∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘 + 𝛾𝑇+1−𝑡𝑉𝑇+1 (18)

𝑉𝑡 = (1 − 𝛼)𝑉𝑡 + 𝛼𝑉 ∗𝑡 (19)

where 𝑟𝑡+𝑘 is the reward of state 𝒔𝑡+𝑘 in the simulated trajectory, 𝑇
is the length of the trajectory containing 𝒔𝑡 , and the discount factor
𝛾 = 0.95. We compute the reward according to the reconstruction
loss of Equation (16) as

𝑟𝑡 = 𝑒−∥𝑊 (𝒔̃𝑡−𝒔𝑡 ) ∥1/𝑇𝑉 , (20)

where the temperature𝑇𝑉 = 20. In the next 200 training epochs, the
initial state will be selected based on the probability proportional
to 1/max(0.01,𝑉𝑡 ).

3.4.4 Trajectory Sampler. At last, to encourage the policy to learn
new transitions between different motions, we augment the tra-
jectory collection process by switching the reference motion clip
randomly during the simulation. The beginning state of the new
motion clip is also selected using the above data balancing strategy.
In practice, many of such switches will cause the character to fall
due to mismatched poses and velocities, but the character can learn
to recover from such falls automatically during the training.
To encourage the policy to embed diverse motion transitions

into prior distribution 𝑝 (𝒛 |𝒔), we further augment the trajectory
collection process with states derived from the prior distribution.
Specifically, the policy randomly chooses to sample latent codes
from the posterior distribution𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1) or the prior distribution
𝑝 (𝒛𝑡 |𝒔𝑡 ). The probability of choosing the latter is empirically set to
0.4. In practice, the skill embeddings learned with this augmentation
behave more actively and responsively in downstream tasks.

4 MODEL-BASED HIGH-LEVEL CONTROLLERS
A learned ControlVAE provides a latent skill space Z and a skill-
conditional policy 𝜋 (𝒂 |𝒔, 𝒛) that a high-level policy can leverage

to accomplish various downstream tasks. Formally, the task policy
𝜋 (𝒛 |𝒔,𝒈) takes the character state 𝒔 and a task-specific parameter 𝒈
as input and computes a skill variable 𝒛. The skill policy 𝜋 (𝒂 |𝒔, 𝒛)
then uses 𝒛 to compute the action 𝒂 accordingly. The task policy can
be trained using model-free reinforcement learning algorithms as
suggested in previous systems [Ling et al. 2020; Luo et al. 2020; Merel
et al. 2020; Peng et al. 2019]. However, the world model learned with
ControlVAE further enables more efficient model-based learning for
the downstream tasks.

In this section, we introduce two model-based control strategies
that can take advantage of the learned world model, as well as a
corpus of locomotion tasks that can be accomplished using these
controllers. Note that the parameters of the learned ControlVAE
are frozen in this stage. Only the gradients are passed through the
networks to optimize the downstream task policies. The character
applies the learned policies in the true simulation and responds
dynamically to user control and unexpected perturbations.

4.1 Model Predictive Control
The first control strategy is the sampling-based model predictive
control (MPC). At each time step, we generate 𝑁MPC synthetic
Monte-Carlo rollouts {𝜏𝒈

𝑖
= {𝒛𝑡 , 𝒂𝑡 , 𝒔𝑡 }𝑖 } of a fixed planning horizon

𝑇MPC using the world model, where the skill variables 𝒛𝑡 of these
rollouts are sampled from the state-conditional prior distribution
𝑝 (𝒛𝑡 |𝒔𝑡 ) of the ControlVAE. We then evaluate each rollout with a
task-specific loss function. The first action of the best trajectory will
be used in the simulation. In practice, we find that 𝑁MPC = 128 and
𝑇MPC = 4 can achieve good performance in our experiments.

4.2 Model-based Learning of Task Policies
Our ControlVAE allows fast model-based policy training for down-
stream tasks based on the world model. Specifically, we assume that
the task policy 𝜋 (𝒛𝑡 |𝒔𝑡 ,𝒈) has the same structure as the approxi-
mate posterior distribution 𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1) of ControlVAE, which is
again a Gaussian distributionN(𝝁𝑔, 𝜎2

𝑔 𝑰 ) with a diagonal covariance
𝜎𝑔 = 𝜎𝑞 and the mean function computed as

𝝁𝑔 = 𝝁𝑝 + 𝝁𝑔, (21)

where 𝝁𝑔 = 𝝁𝑔 (𝒔,𝒈;𝜃𝑔) is a neural network parameterized by 𝜃𝑔 .
During the training, we generate a batch of𝑁ML = 256 synthetic roll-
outs {𝜏𝒈

𝑖
} for a fixed horizon 𝑇ML = 16 and update the policy 𝝁𝑔 by

minimizing the task-specific loss function. The reparameterization
trick is also applied in this process to ensure the backpropagation
of the gradients to the policy.
To generate the initial states for synthesizing these rollouts, we

apply the current task policy in the simulated environment with
the corresponding goal parameters 𝒈 changing randomly every 72
steps. These simulated states and goal parameters are then stored in
a buffer B𝒈 with size 4096. During the training, a synthetic rollout
is generated by sampling an initial state 𝒔0 from B𝒈 and executing
the task policy using the recorded sequence of task parameters {𝒈𝑡 }
following 𝒔0.

4.3 Tasks
In this section, we introduce a corpus of locomotion tasks that
can be accomplished by the above model-based control strategies.
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We formulate these tasks as a set of loss functions computed over
each of the generated trajectories 𝜏𝒈 . Using the skill embeddings
learned in ControlVAE, the corresponding task policies can generate
natural motions to complete these tasks in simulation and respond
to unexpected perturbations.
Unless otherwise stated, all our loss functions have the form

L(𝜏𝒈) =
𝑇∑︁
𝑡=1

[
L𝒈 (𝒔𝑡−1, 𝒔𝑡 ) + Lfall (𝒔𝑡 )

]
+𝑤𝑧

𝑇−1∑︁
𝑡=0
∥𝝁𝑔 ∥22, (22)

where L𝒈 stands for the task-specific loss computed using the cur-
rent state 𝒔𝑡 and optionally the previous state 𝒔𝑡−1, and Lfall (𝒔𝑡 )
penalizes potential falling as

Lfall (𝒔𝑡 ) = max(ℎ∗0 − ℎ0, 0), (23)

where ℎ0 is the height of the character’s root, ℎ∗0 = 0.5𝑚 is a falling
threshold. The last term of Equation (22) is a regularization term
that encourages the high-level policy to stay close to the prior
distribution. We find this term crucial to a stable and successful
training.𝑤𝑧 = 20 works for all our experiments.

Height control. We define a simple loss to control the height of
the character as

L𝒈 = 𝐻 · ℎ0, (24)

where ℎ0 represents the current height of the character’s root joint.
The task parameter 𝐻 ∈ {−1, 1} indicates the desired motion for the
character, where 𝐻 = −1 encourages the character to squat down
and eventually lie on the ground and 𝐻 = 1 will let the character
get up and jump when possible to maintain a high root position.

Heading control. In the heading control task, the character needs
to travel while heading towards a target direction 𝜃∗

ℎ
∈ [−𝜋, 𝜋]

at a given speed 𝑣∗ ∈ [0.0, 3.0]𝑚/𝑠 along that direction. The loss
function is thus defined as

L𝒈 = 𝑤𝜃ℎ |𝜃
∗
ℎ
− 𝜃ℎ | +𝑤𝑣

|𝑣∗ − 𝑣 |
max(𝑣∗, 1) , (25)

where 𝜃ℎ and 𝑣 are the character’s current heading direction and
speed.We compute 𝜃ℎ according to the orientation of the character’s
root and 𝑣 as the component of the root’s velocity along this direc-
tion. The weights are set to (𝑤𝜃ℎ ,𝑤𝑣) = (2.0, 1.0) for this task. Note
that we normalize the speed loss according to the target speed to
encourage the training to pay attention to these low-speed motions.

Steering control. The objective of the steering task is to control
both the heading direction 𝜃ℎ and the travel direction 𝜃𝑣 simultane-
ously. Specifically, we define the loss function as

L𝒈 = 𝑤𝜃ℎ |𝜃
∗
ℎ
− 𝜃ℎ | +𝑤𝜃𝑣 |𝜃

∗
𝑣 − 𝜃𝑣 | +𝑤𝑣

|𝑣∗ − ∥𝒗0∥2 |
max(𝑣∗, 1) , (26)

where 𝒗0 represents planar components of the root’s linear velocity
𝒗0 and 𝜃𝑣 is its directional angle, computed as the angle between 𝒗0
and the x-axis of the global coordinate frame. The weights are set
similarly as (𝑤𝜃ℎ ,𝑤𝜃𝑣 ,𝑤𝑣) = (2.0, 2.0, 1.0) for this task.

ALGORITHM 2: Model-based training algorithm of task policy

Function GenSynTraj( 𝜔 ,𝒔0, 𝑝 (𝒛 |𝒔𝑡 , ∗) ) :
// 𝑝 (𝒛 |𝒔𝑡 , ∗) is a conditional distribution of 𝒛

for 𝑡 ← 0 to𝑇SL − 1 do
Sample 𝒛𝑡 ∼ 𝑝 (𝒛 |𝒔𝑡 , ∗) ;
Sample 𝒂𝑡 ∼ 𝜋 (𝒂𝑡 |𝒔𝑡 , 𝒛𝑡 ) ;
𝒔𝑡+1 ← 𝜔 (𝒔𝑡 , 𝒂𝑡 ) ;

end
end
Function TrainSkillCtrl( Env, ControlVAE, 𝜔 , 𝜋,𝐷,𝐶 ) :

// 𝐷 is the discriminator and 𝐶 is the classifier

Collect simulated trajectory 𝜏∗ with random goals {𝒈𝑡 } ;
Store 𝜏∗ and {𝒈𝑡 } into B;

/* Synthesize real rollouts */

Select motion clips 𝜏 with a random skill label 𝒄 in D;
𝜏𝒄 = {𝒔𝒄0 , 𝒛𝒄0 . . . } ← GenSynTraj( 𝒔̃0, 𝑞 (𝒛 |𝒔𝑡 , 𝒔̃𝑡+1 )) ;

/* Synthesize fake rollouts */

Select 𝜏∗ and {𝒈𝑡 } from B;
𝜏𝒈 = {𝒔0, 𝒔1, . . . } ← GenSynTraj( 𝒔0, 𝜋 (𝒛 |𝒔𝑡 ,𝒈𝑡 )) ;
Calculate L𝒈′ , L𝐷 , L𝐶 using 𝜏𝒈 ;

/* Regularization term */

for 𝑡 ← 0 to𝑇SL − 1 do
𝒈𝒄′
𝑡 ← calculate goal parameters from 𝒔𝒄𝑡 , 𝒔

𝒄
𝑡+1 ;

𝒛𝒄
′

𝑡 ∼ 𝜋 (𝒛 |𝒔𝒄𝑡 ,𝒈𝒄′
𝑡 ) ;

Calculate Lreg using 𝒛𝒄
′

𝑡 , 𝒛𝒄𝑡 ;
end

/* Update network parameters */

Update 𝜋 with Equation (31);
Update 𝐷 using 𝜏𝑐 , 𝜏 fake with Equation (27);
Update𝐶 using 𝜏, 𝒄 with Equation (30);

end

Skill control. The objective of the skill control is to let the charac-
ter use a specific skill to accomplish a given task, such as responding
to steering control while jumping or hopping. In this task, a skill is
specified using a 4-second motion clip manually selected from the
dataset. We have selected 5 skills for this task, including walking,
running, hopping, jumping, and skipping, as shown in Figure 11.
The task parameter 𝒄 is thus defined as a one-hot vector indicating
the index of the skill.
Unfortunately, we do not yet have a direct mapping between

a specific skill 𝒄 and its corresponding latent code 𝒛, so that the
character has to figure out by itself whether it is performing the
correct skill corresponding to the reference motion clip. Inspired by
AMP [Peng et al. 2021], which learns an adversarial discriminator
to enforce a specific motion style in reinforcement learning, we
employ a similar discriminator in our model-based learning process
that penalizes incorrect motions as an adversarial loss function.
More specifically, we train the task-specific control policy to

mimic the behavior of a tracking policy characterized by the approx-
imate posterior 𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1), as illustrated in Algorithm 2. In each
training iteration, we first generate a batch of control rollouts {𝜏𝒈}
as described in Section 4.2, where each 𝜏𝒈 is conditioned on a skill
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(a) Simulation Model (b) Visualization Model

Fig. 3. The character model used in this paper.

vector 𝒄 . Then, for each 𝜏𝒈 , we extract a short random reference
clip with the same length from the reference motion of skill 𝒄 . By
tracking this short reference clip using the approximate posterior
𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1), where 𝒔𝑡 is the generated state and 𝒔𝑡+1 is from the
reference clip, we obtain a tracking rollout 𝜏𝒄 . We then consider
{𝜏𝒄 } as the real data samples and the control rollouts {𝜏𝒈} as the
fake data samples and employ a discriminator 𝐷 to distinguish be-
tween them. Following Peng et al. [2021], we adapt a least-squares
GAN [Mao et al. 2017] in this training. The adversarial loss for the
discriminator 𝐷 is defined as

arg min
𝐷

E𝒔𝑡 ,𝒔𝑡+1∼{𝜏𝒄 }
[
(𝐷 (𝒔𝑡 , 𝒔𝑡+1; 𝒄) − 1)2

]
+ E𝒔𝑡 ,𝒔𝑡+1∼{𝜏𝒈 }

[
(𝐷 (𝒔𝑡 , 𝒔𝑡+1; 𝒄) + 1)2

]
+𝑤𝑔E𝒔𝑡 ,𝒔𝑡+1∼{𝜏𝒄 }

[
∥∇𝒔𝑡 ,𝒔𝑡+1𝐷 (𝒔𝑡 , 𝒔𝑡+1; 𝒄)∥2

]
. (27)

Note that the discriminator𝐷 is also conditioned on the skill vector 𝒄 .
The last term of the above equation regularizes the gradient of the
discriminator with respect to the real data samples, which allows a
more stable training [Peng et al. 2021]. We set its weight𝑤𝑔 = 20.
The objective of the character is now to complete a target task,

e.g. heading control, while behaving indistinguishably from the
reference motion. This can be achieved using the adversarial loss

L𝐷 = (𝐷 (𝒔𝑡 , 𝒔𝑡+1; 𝒄) − 1)2 , (28)

where 𝒔𝑡 , 𝒔𝑡+1 ∼ {𝜏𝒈}.
To further facilitate the character to perform the correct skill

in the skill set, we train a separate skill classifier 𝐶 to predict the
possiblity that a state transition (𝒔𝑡 , 𝒔𝑡+1) belongs to a specific skill 𝒄 .
It is trained with the transitions in the real data samples {𝜏𝒄 }

arg min
𝐶

E𝒔𝑡 ,𝒔𝑡+1∼{𝜏𝒄 } [H [C(𝒔𝑡 , 𝒔𝑡+1), 𝑐]] , (29)

whereH is the cross-entropy loss. Then, we add a classifier loss

L𝐶 = H [C(𝒔𝑡 , 𝒔𝑡+1), 𝑐] (30)

to the task’s loss function, where again 𝒔𝑡 , 𝒔𝑡+1 ∼ {𝜏𝒈}.
The final loss function for the style control is defined as

L𝒈 = L𝒈′ +𝑤𝐷L𝐷 +𝑤𝐶L𝐶 +𝑤𝑟Lreg, (31)

where L𝒈′ is the loss function of the target task. The last term
of Equation (31), Lreg, is a regularization term inspired by [Luo

Table 1. Length of each motion after resampling

Motion Frames (20 fps)
Walk 5227
Run 4757
Jump 4889
Getup 3365

et al. 2020]. It considers the result of synthetically tracking the
reference clip 𝜏𝒄 of skill 𝒄 as the output of a perfect policy finishing
the task specified by 𝜏𝒄 itself. The task policy being trained thus
need to clone the behavior of this perfect policy. To achieve this,
we extract the task parameters {𝒈𝒄 ′𝑡 } from 𝜏𝒄 and assume that the
posterior 𝒛𝒄𝑡 ∼ 𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1) is the output of the perfect policy. The
regularization term is then defined as

Lreg = ∥𝒛𝒄𝑡 − 𝒛𝒄
′

𝑡 ∥1, (32)

where 𝒛𝒄
′

𝑡 ∼ 𝜋 (𝒛 |𝒔𝑡 ,𝒈𝒄
′

𝑡 ) is the prediction of the current task policy
for the task. This term is crucial to maintain a stable training in
practice. We use (𝑤𝐷 ,𝑤𝐶 ,𝑤𝑟 ) = (5.0, 0.5, 10.0) in our experiments.

5 RESULTS

5.1 System Setup
As shown in Figure 3, we simulate a character model that is 1.6m
tall, weighs 49.5 kg, and consists of 20 rigid bodies. A uniform set
of PD control parameters (𝑘𝑝 , 𝑘𝑑 ) = (400, 50) is used for all the
joints, except for the toe joints (10, 1) and the wrist joints (5, 1). The
character is simulated using the Open Dynamics Engine (ODE) at
120Hz. The stable-PD mechanism [Liu et al. 2013; Tan et al. 2011] is
implemented to ensure a stable simulation with the large timestep.
Our system executes ControlVAE, the world model, and all the

task-specific policies at 20Hz. It is lower than the simulation fre-
quency, thus the same action is used in the simulation until the con-
trol policies are evaluated next time. ControlVAE assumes no knowl-
edge about the simulation. It extracts the position and orientation
of each rigid body from the physics engine and computes the corre-
sponding velocities and angular velocities using finite difference. We
implement and train the ControlVAE using PyTorch [Paszke et al.
2019]. Once trained, the entire system runs faster than real-time on
a desktop, allowing interactive control of the simulated character.

5.2 ControlVAE training
We train our ControlVAE on an unstructured motion capture dataset
consisting of four long motion sequences selected from the open-
source LaFAN dataset [Harvey et al. 2020] as shown in Table 1.
This dataset contains a diverse range of motions, including walking,
running, turning, hopping, jumping, skipping, falling, and getting up.
The motion sequences are downsampled to 20 fps and augmented
with their mirrored sequences, resulting in an augmented dataset
with approximately 30minutes high-quality motion.

We train the ControlVAE models using the RAdam [Liu et al.
2020] optimizer with 𝛽1 = 0.9, 𝛽2 = 0.999, and the learning rates
of policy and world model are (1e-5, 2e-3). Following the standard
technique for achieving a robust training, the gradient norms are
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Fig. 4. A typical learning curve of ControlVAE.

clipped between [−1, 1]. Figure 4 shows a typical learning curve of
ControlVAE, where the reward is calculated using Equation 20 on
the simulated trajectories collected during the training. The training
process begins to converge after about 10,000 iterations, and the
motion quality keeps improving in the following training. Our full
training takes 20,000 iterations and about 50 hours with four parallel
working threads on an Intel Xeon Gold 6240 @ 2.60GHz CPU and
one NVIDIA GTX 2080Ti graphics card.

5.3 Evaluation
We evaluate the effectiveness of a learned ControlVAE using two
simple tasks.

Reconstruction. To show that the ControlVAE has the same ability
as other autoencoders in reconstructing an input motion, we use the
learned approximate posterior 𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1) as a tracking control
and let ControlVAE to track motion sequences randomly chosen
from the dataset. The character performs the input motion accu-
rately in the simulation, and when another random clip is given,
it automatically performs a smooth transition and then tracks the
target motion again. In some extreme cases where the difference
between current state and target motion is too large, the character
may fall on the ground. It then automatically discovers a recovery
strategy to get up, which is not included in the dataset.

Random sampling. The ControlVAE learns a generative control
policy 𝜋 (𝒂 |𝒔, 𝒛) conditional on the latent skill variable 𝒛, which al-
lows us to generate a diverse range of behaviors even by drawing
random samples in the latent space Z. Specifically, given a ran-
dom initial state, we draw samples from the state-conditional prior
distribution 𝑝 (𝒛 |𝒔) at every control step. The simulated character
then performs random skills smoothly, such as stopping and then
starting to walk, taking random turns, hopping and skipping for
a short period, etc. Figure 5 shows the root trajectories of several
sample trajectories, where the character starts from a random state
and performs random actions for 200 control steps, or 10 seconds.
It can be seen that our ControlVAE generates a diverse range of
motions in this random walk test.

Fig. 5. Visualization of the random trajectories generated in the random
sampling experiment, showing the planar positions of the character. These
trajectories are generated by drawing random latent codes from the prior
distribution of a learned ControlVAE model. Starting from the same initial
states, the simulated character moves towards different directions while
performing realistic motions.

5.4 Model Predictive Control
We test our MPC strategy on the height and heading control tasks.
With interactive user input, the character lies down, gets up, and
moves toward the target direction. The MPC policy can achieve
real-time performance on the multicore computer we used to train
ControlVAE with an NVIDIA GTX 2080Ti graphics card. Due to
the limited number of samples, our sampling-based MPC cannot
guarantee smooth and accurate results, but the resulting motions
are generally acceptable. In practice, MPC can be used as an experi-
mental tool to test our training settings, for example, to see whether
a loss function is suitable for the task.

5.5 Model-based Training
Training settings. We model the task policy 𝝁𝑔 using a neural

network with three hidden layers, each having 256 units for heading
control task and 512 for all other tasks. We use the RAdam [Liu et al.
2020] optimizer with the learning rate decaying exponentially as
0.001 ∗max(0.99iteration, 0.1). We find this exponentially decaying
learning rate improves the stability of the training process.

Heading control. In this task, our character is able to move and
respond to user input such as changing the moving direction and
speed. It automatically transits between different skills to achieve
the target direction and speed (see Figure 10(b)). It is also capable of
resisting external perturbation or recovering from tumbling when
moving (see Figure 10(f) and 10(g)). Figure 6 shows the response
of the character to a speed change. We can see that our character
reacts quickly to adapt to the speed change and stops at last as the
final target speed is zero.

Figure 10(a) shows a derived task of going towards a target loca-
tion. We achieve this by computing the target direction and speed
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Fig. 6. Visualization of the character’s speed in the heading control task.
The character slows down and stops under user control.

Fig. 7. Typical learning curves of the skill control task. Red: the classifier
loss. Blue: the direction loss. A lower classifier loss suggests that the learned
policy can generate motions of the target skill. A lower direction loss indi-
cates that the policy can accomplish the heading control task. The curves
are normalized based on the values of the first iteration.

according to the relative distance between the character and the goal.
The character can move towards the goal and stop when reaching
it.

Steering control. In the steering control task, our character learns
to move to the target direction while facing towards another direc-
tion. As shown in Figure 10(c), the character learns to walk sideways
under user control. It demonstrates a more complex foot pattern
compared with that used in simply moving forward.

Skill control. In the skill control task, our character learns to
accomplish the heading control task using a user-specified skill. Both
the discriminator 𝐷 and classifier𝐶 are modeled as neural networks
with two 256-unit hidden layers. They are updated with the RAdam
optimizer with the learning rates 0.0001 and 0.01, respectively. As
shown in Figure 10(d) and Figure 10(e), the character can turn while
maintaining the given style. Figure 7 shows the learning curve of
this task. We can see that as the training processes, the policy learns
the heading control first and gradually grasps the styles.

5.6 Comparison
In this section, we conduct several experiments to justify our design
choices and the performance of the ControlVAE.

(a) VAE with non-conditional prior (b) ControlVAE

Fig. 8. Visualization of different skills in the latent space.

Fig. 9. Training curves of the heading control policies using ControlVAE
and VAE with non-conditional prior.

Comparison with VAE with non-conditional prior. One of the key
components of ControlVAE is the state-conditional prior distribu-
tion. To show the effectiveness of this design, we train a different
ControlVAE with the standard normal distribution N(0, 𝑰 ) as the
prior distribution. This can be achieved equivalently by defining
the posterior as 𝑞(𝒛𝑡 |𝒔𝑡 , 𝒔𝑡+1) ∼ N (𝝁𝑞, 𝑰 ) and sampling 𝒛 ∼ N(0, 𝑰 )
when needed in the training. We refer to the ControlVAE with this
configuration as the VAE with non-conditional prior (VAE-NC).
Figure 8 shows a comparison between the learned latent spaces

of ControlVAE and VAE-NC, where we encode three motion clips of
different skills into the latent spaces using the learned approximate
posterior distributions. Generally speaking, the state-conditional
prior allows each skill to be embedded into the latent space more
continuously than the standard normal distribution, and the latent
codes of different skills are more separated. This can be further justi-
fied by downstream tasks. In the random sampling test, the character
controlled by VAE-NC behaves more unstably, often falls on the
ground, and struggles to get up. Also in the heading control task,
the character controlled by VAE-NC can hardly follow the target
direction but keep turning and falling. The corresponding learning
curve in Figure 9 also shows that the VAE with non-conditional
prior performs worse than ControlVAE.

Comparison with reinforcement learning. Many recent works achi-
eve successful hierarchical control policies using model-free rein-
forcement learning algorithms, where a task policy is trained on top
of a learned skill latent space [Ling et al. 2020; Luo et al. 2020; Merel
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(a) Target Location

(b) Speed and Turn (c) Walk Sideways

(d) Jump and turn (e) Hop and Turn

(f) Push and Recovery (g) Keep Balance

Fig. 10. Simulated character performing tasks with a high-level control policy.

et al. 2020]. Our ControlVAE also support training task-specific poli-
cies in this way. As a comparison with our model-based learning
paradigm, we train the same heading control task using the PPO
algorithm [Schulman et al. 2017], which is often implemented as a
model-free reinforcement learning approach and is widely used in
physics-based character animation.

More specifically, the reinforcement learning algorithm optimizes
a control policy 𝜋 by maximizing the expected return over all pos-
sible simulation trajectories induced by 𝜋 . To train a task-specific
control policy 𝜋 (𝒛 |𝒔,𝒈), we generate these trajectories by sampling
skill variables 𝒛 ∼ 𝜋 (𝒛 |𝒔,𝒈), converting 𝒛 into an action 𝒂 using
the skill-conditioned policy 𝜋 (𝒂 |𝒔, 𝒛) learned by ControlVAE, and
then executing 𝒂 in the simulation. The reward function is simply
defined 𝑟𝑡 = 𝑒−L𝒈 , whereL𝒈 is the task-specific loss function of the
heading control task in Equation (25). Note that we do not include
the falling penalty Lfall in the reward, but instead early-terminate
the trajectory when falls are detected. The control policy 𝜋 (𝒛 |𝒔,𝒈) is
modeled the same as the one we used in the model-based learning.

We train the policy 𝜋 (𝒛 |𝒔,𝒈) using our own implementation of
the PPO algorithm, which can achieve comparable performance on
simple tracking tasks with DeepMimic [Peng et al. 2018]. Figure 12
shows the learning curve of this training, as well as the learning
curve of the model-based learning on the same task. In general,
the policy trained using model-based learning can achieve good
performance quickly, while PPO implementation takes more time
and transitions to reach a comparable level of performance. It should
be noted that in Figure 12, both the real and synthetic transitions are
counted. The model-based learning process mainly consumes the
synthetic transitions, which can be computed much more efficiently
than the simulation due to the approximation nature of the world
model and the help of modern GPU hardware. Our model-based
learning approach can also achieve better performance with the
same numbers of transitions due to the advantage of direct gradient
delivery. In practice, the model-based learning can finish training
with good results in half an hour, while the reinforcement learning
will take a much longer time to obtain a quality control policy.
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(a) Walk (b) Run

(c) Jump (d) Hop

(e) Skip (f) Getup

Fig. 11. Simulated character performing different skills in the skill control task

Fig. 12. Training curves of the heading control policies using model-based
learning and reinforcement learning. Left: training progresses with respect
to the number of transitions. Right: training progresses with respect to time.

5.7 Robustness, Scalability, and Generalization
Random seed. In Figure 13(a) we show the results of training three

ControlVAEs using different random seeds. It can be seen that our
method performs consistently in this test. Another interesting fact
is that the world models trained with different random seeds can
replace each other in training the downstream locomotion tasks.
To show this, we train two heading control policies using the same
ControlVAE skill policy but with different world models trained with
different random seeds. As shown in Figure 13(b), the performances
of the results are very close.

Training settings. Figure 13(c) shows the effect of different train-
ing settings. We first test to train the world model without the
synthetic rollouts, i.e. 𝑇𝑤 = 1. The result shows that the training
process is fairly unstable and blows up early. In the second test, we
train ControlVAE with a larger learning rate (2𝑒 − 5). The training
process converges faster than our default settings but can become

(a) Different random seeds. (b) Altered world model.

(c) Different settings. (d) Different datasets.

Fig. 13. (a) Training ControlVAE with different random seeds. (b) Training
heading control with the original/altered world model. We train ControlVAE
and the original world model with seed 0. The altered world model is trained
with seed 1. (c) Training curves with different settings: using a larger learning
rate and training the world model without synthetic rollouts. (d) Training
ControlVAE on different datasets.

unstable as the training progresses. However, even though the train-
ing loss may occasionally increase quickly, we can early-terminate

ACM Trans. Graph., Vol. 41, No. 6, Article 183. Publication date: December 2022.



183:14 • Yao, Song, Chen, and Liu

Fig. 14. Tracking error of different motions. The motion with the prefix sfu
are selected form the SFU motion dataset [2011], which are not used in
training the ControlVAE.

the learning during the stable region, and the learned ControlVAE
can still accomplish the downstream tasks.

Coverage. To test howwell the learned skill embeddings cover the
training skills, we let ControlVAE track all the motion sequences in
the training dataset and check the accuracy of the reconstruction.We
divide the long motion sequences into 2-second clips, and calculate
the average tracking error between the relative position of each
body to the root and that in the reference. As shown in Figure 14, the
learned ControlVAE can reconstruct the training motions accurately,
which indicates that all the training skills are embedded in the
latent space. We further test the ability of the learned ControlVAE
in reconstructing unseen motions. Five motion clips from the SFU
dataset [2011] are selected in this test, as shown in Figure 14, which
are not used in the training. As indicated in Figure 14, ControlVAE
can track the unseen motions that are similar to the existing skills
in the training dataset accurately, such as stylized walking and
stomping, albeit with some motion details missing. For the motions
that are significantly different, such as rolling, the character only
struggles on the ground, causing a large tracking error.

Dataset. We test our ControlVAE on two other datasets. One is a
selected subset of the SFU mocap dataset [2011], containing approx-
imately 7-minute diverse locomotion clips. The other is a 4-minute
dance clip selected from the LaFAN dataset [Harvey et al. 2020].
These tests have similar training processes, and random sampling in
the latent spaces creates diverse locomotion behaviors and dances.
We further conduct an experiment on a large-scale dataset com-

posed of 3.3 hours (after the mirror augmentation) of motions se-
lected from the LaFAN [Harvey et al. 2020] dataset, which covers
most of the motion categories except for those interact with external
objects or uneven terrains. The result in Figure 13(d) shows that
the training process finishes in roughly the same time as that on
the small datasets but converges to a lower reward. The learned
skill embeddings can still recover an input motion with a larger
visual discrepancy, but the performance on the downstream tasks
are significance degenerated.

6 DISCUSSION
In this paper, we present ControlVAE, a model-based framework for
learning generativemotion control policies for physics-based charac-
ters. We show that state-conditional VAEs can be efficiently trained
using a model-based method, resulting in a rich and flexible latent

space that captures a diverse set of skills and a skill-conditioned
control policy that effectively converts each sample in the latent
space into realistic behaviors in physics-based simulation. We show
that taking advantage of these generative control policies, we can
generate various motion skills simply by sampling from the latent
space. Task-specific control policies can be further trained to oper-
ate in this latent space, allowing a variety of high-level tasks to be
accomplished using realistic motions.
The key observation of this work is that by learning a differ-

entiable world model, we can effectively bridge the gap between
the learning of control policies and the losses defined on the sim-
ulated motion. Furthermore, the learned world model provides an
effective differentiable approximation of the real simulation, which
allows high-level policy to be trained efficiently using model-based
learning. We believe that our results open the door to many interest-
ing topics, such as model-based learning of controllers using other
generative models like GAN and normalizing flows. In addition,
combining model-based learning with other successful motion syn-
thesis algorithms could be a potential way to realized physics-based
motion synthesis [Starke et al. 2021], style transfer [Aberman et al.
2020], and motion in-painting [Harvey et al. 2020].
For the future work, we wish to explore the possibility of adapt-

ing the learned world model to environmental changes, such as
dealing with additional objects and characters, which potentially
allows us to extend a learned skill space to unseen environments.
Currently, our model-based learning schemes can not handle such
tasks, for which the model-free reinforcement learning methods are
still needed. In addition, similar to other data-driven method, the
performance of our system is still bounded by the training dataset.
For example, we have encountered problems in learning a high-level
policy to control the character to travel while facing towards cer-
tain directions because the corresponding motions are sparse in the
dataset. Our ControlVAE also performs less efficiently in learning
large-scale motion dataset with hours of motions, potentially due
to the limited capacity of the network architecture. Learning these
sparse skills more effectively, as well as scaling up to large-scale
datasets, will be a very interesting direction for future exploration.
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